Partially Integrable Highest Weight Modulesivan Dimitrov and Ivan
نویسندگان
چکیده
We prove a more general version of a result announced without proof in DP], claiming roughly that in a partially integrable highest weight module over a Kac-Moody algebra the integrable directions form a parabolic subalgebra.
منابع مشابه
Weight Modules of Direct Limit Lie Algebras
In this article we initiate a systematic study of irreducible weight modules over direct limits of reductive Lie algebras, and in particular over the simple Lie algebras A(∞), B(∞), C(∞) and D(∞). Our main tool is the shadow method introduced recently in [DMP]. The integrable irreducible modules are an important particular class and we give an explicit parametrization of the finite integrable m...
متن کاملON THE STRUCTURE OF WEIGHT MODULESIvan
Given any simple Lie superalgebra g, we investigate the structure of an arbitrary simple weight g-module. We introduce two invariants of simple weight modules: the shadow and the small Weyl group. Generalizing results of Fernando and Futorny we show that any simple module is obtained by parabolic induction from a cuspidal module of a Levi subsuper-algebra. Then we classify the cuspidal Levi sub...
متن کاملLecture 6: Kac-moody Algebras, Reductive Groups, and Representations
We start by introducing Kac-Moody algebras and completing the classification of finite dimensional semisimple Lie algebras. We then discuss the classification of finite dimensional representations of semisimple Lie algebras (and, more generally, integrable highest weight representations of Kac-Moody algebras). We finish by discussing the structure and representation theory of reductive algebrai...
متن کاملFermionic Characters and Arbitrary Highest-weight Integrable Sl R+1 -modules
This paper contains the generalization of the Feigin-Stoyanovsky construction to all integrable sl r+1-modules. We give formulas for the q-characters of any highest-weight integrable module of sl r+1 as a linear combination of the fermionic q-characters of the fusion products of a special set of integrable modules. The coefficients in the sum are the entries of the inverse matrix of generalized...
متن کاملFrame-by-Frame 1H MRS for In Vivo Pancreatic Fat Quantification
Summed 11.4238 10.9135 18.752 0.4368 Frame-by-Frame 1H MRS for In Vivo Pancreatic Fat Quantification Qing Yuan, Daniella F Pinho, Ivan E Dimitrov, Ivan Pedrosa, Yin Xi, Ildiko Lingvay, Anna Vanderheiden, and Robert E Lenkinski Radiology, UT Southwestern Medical Center, Dallas, TX, United States, Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States, Philips...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009